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Introduction

The field of medical imaging has seen great advancements 
within the last decade. Constant exponential growth in techno-
logical capability in both processing power and storage capa-
bilities has led to an increased potential for integration within 
many work streams, and thus a stronger reliance on said tech-
nology to support the ever-growing industrial landscape. In 
particular, scientific development holds significant potential for 
substantial advancement in medical imaging. Internal body im-
aging plays a vital role in the diagnosis and surgical planning 
processes, and the required medical staff undergo years of ex-
tensive training to gain the expertise and insight necessary to 
interpret the intricacies within medical images. However due to 

the increasing demand and workload on the required medical 
professionals, diagnosis time increasingly acts to bottleneck the 
full imaging process. Therefore any and all advancements that 
can be made to alleviate this constraint are greatly sought after.

In particular, this applies to the field of medical segmenta-
tion, a time-intensive process that requires extensive effort on 
the part of the trained professional, as well as niche, specific 
and lengthy training procedures of its own. Segmentation re-
fers to the process of defining specific key structures within the 
medical image to a pixel level, such as tumours, organs or tis-
sue. This process allows for the 3D modelling of isolated organs 
or internal bodily systems by the stacking of 2D layers (see Fig-
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ure 1), often obtained from pixel-level selection of Computed 
Tomography (CT) scans, Magnetic Resonance Imaging scans 
(MRIs) or ultrasound technology. Its application has demon-
strated substantial utility in computer-aided healthcare in an 
ever-increasing number of applications such as patient specific 
instrument design processes [2], disease diagnosis and moni-
toring, adaptive radiotherapy and surgical preparation. Given 
the considerable time that must be dedicated to the segmen-
tation process, it has remained a particularly key area of focus 
in the field of automation. A range of algorithms have been 
developed making use of several methodologies within the 
realm of machine learning and Artificial Intelligence (AI) to per-
form classification on a pixel level. These advancements aim to 
streamline and expedite the segmentation process, allowing for 
efficient and accurate organ definition and anatomical model-
ling while reducing the burden placed on the surgeon. Fu et al. 
[3] explores a comparison between from-scratch segmentation 
compared to manually corrected automatic segmentation. The 
results revealed a significant time-saving advantage, with the 
utilization of the semi-automatic system requiring a quarter of 
the time as fully manual segmentation.

Figure 1: Dlagrammatical representation of multi-stacking of 2D 
planes to from 3D voxel-based models [1].

Figure 2: Search strategy for paper gathering process. Flowchart 
shows the developmental stages of the information gathering 
stage.

This field is witnessing rapid and frequent advancements 
with the continuous publication of newer developments and 
increasingly streamlined algorithms. Consequently, it is crucial 
to stay informed of any recent progress in order to maintain a 
relevant understanding of the landscape as a whole. This pa-
per aims to cover the general state-of-the-art within the field of 
deep learning techniques applied to medical image segmenta-
tion as of the time of writing, with a particular focus on widely 
adopted stratagems and algorithms. Any necessary background 
knowledge within the field is also detailed, and developments 
of specific importance are identified that may indicate promis-
ing future developments.

Figure 2 shows the search process through which the mate-
rial discussed in this paper was gathered. Initial searches and 
filtering criteria yielded an excessive number of results thus 
leading to more robust filtering processes. Upon more in-depth 
analysis of paper contents, 100 papers presenting novel seg-
mentation processes were identified. An additional 40 papers 
collected presenting appropriate background information or 
relevant work.

The rest of this paper is structured as follows: Section 1 cov-
ers the landscape of segmentation as a whole, and the domi-
nant topics within the imaging landscape. Section 2 details deep 
learning processes utilised within the field, including Generative 
Adversarial Networks (GANs), Convolutional Neural Networks 
(CNNs) and their derivative - Fully Convolutional Networks 
(FCNs), as well as specific models of interest. Lastly, section 3 
covers the general distribution of models, highlighting popular 
frameworks and areas under particular focus. We conclude the 
paper with coverage of relevant technical challenges facing the 
medical imaging landscape, and discuss potential future devel-
opments in the field.

Segmentation classifications

Segmentation processes can typically be divided into 2 main 
categories, being semantic segmentation and instance segmen-
tation respectively. The emergence of a third category, panoptic 
segmentation, has also been reported in recent literature [4].

Semantic and instance segmentation

Semantic segmentation [5-7] involves the labelling of every 
individual pixel within a target image with its corresponding se-
mantic class. Any pixel within an object is deemed a part of the 
same collective, causing no differentiation between two sepa-
rate instances belonging to the same class. This can cause am-
biguity in regions where two objects are overlapping or in close 
proximity with one another, often “bridging the gap” or wrongly 
categorising a significant area, as well as difficulty distinguishing 
individual objects (Figure 3).

This complication is confronted with instance segmentation 
[8-10], which goes beyond semantic segmentation by introduc-
ing a unique independent class for each object within the im-
age. In this case, neighboring cases of the same object will be 
classified separately, enabling a more detailed understanding of 
the image landscape as a whole. Heavily occluded objects with-
in the image are still vulnerable to misclassification, and the in-
creased computational demand in some cases limits instance 
segmentations applicability to real-time segmentation process-
es and hinders the scalability for large-scale applications.
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Combinative techniques

Semantic instance segmentation [11-14], a hybrid approach, 
takes on qualities of both segmentation types, of which a hand-
ful of notable strategies have emerged over the last few years. 
This methodology combines the individual instance labelling 
approach with the class-based object labels employed in se-
mantic segmentation. The result is the generation of pixel-level 
maps akin to those produced in instance segmentation, but uti-
lising a multi-ID classification system characterising both object 
type and number.With this change in place, multiple classes 
of the same object can be classified as more inherently simi-
lar to one another than classes representing entirely different 
objects. Zhou et al. [12] proposed a novel semantic segmenta-
tion algorithm that combines aspects of both proposal-based 
and proposal-free models. They leverage the strengths of both 
methods by providing a proposal-free model with a Discrimina-
tive Deep Supervision (DDS) module, incorporating aspects of 
proposal-based methodology and introducing instance-sensi-
tive structural information to the system, forming a general in-
stance semantic segmentation algorithm. The promising results 
of this algorithm demonstrate the effectiveness of combinative 
semantic instance segmentation and combined proposal-free 
and proposal-based methods over previous methods utilising a 
more limited ability set.

Figure 3: Comparison of semantic, instance and panoptic segmen-
tion processes [4].

A similar approach was taken by Kirillov et al. [4] who first 
proposed the concept of panoptic segmentation (Figure 3). 
Panoptic segmentation adopts a thought process as defined 
in Adelson et al., “On seeing stuff” [15], which defines two 
all-encompassing categories within computer vision, that of 
“things”, distinct, separable objects within the scene that can 
be recognised, and “stuff”, the amorphous background regions 
of the image that are not individually identifiable as objects. 
Panoptic approaches classify individual instances of separate 
objects with unique labels, as with instance segmentation, but 
assign the background detail (the stuff) a shared common cat-
egory label that does not allow separation, as with semantic 
segmentation approaches. Panoptic segmentation was devised 
in order to bridge the widening gap between semantic and in-
stance based approaches, and has since been adopted into a 
range of applications including nucleus segmentation via neural 
networks [16], lung ultrasound processing [17] and many non-
medical industries.

While combinative semantic instance applications are 
emerging in the current landscape, they have not been widely 
adopted in the industry and have found limited utilisation in 
comparison to the long-withstanding and well established se-
mantic and instance segmentation methodologies.

Dimensionality

Building on the foundation of semantic and instance seg-
mentation methodologies, another pivotal consideration in 
medical image analysis is the dimensionality of the data being 
processed. Unlike their 2D counterparts which operate on in-
dividual, independent planar slices, 3-dimensional segmenta-
tion algorithms [18] leverage the contextual depth information 
provided by volumetric data to achieve a higher spatial under-
standing.

Crepsi et al. [19] proposed a comparison of performance 
for models utilising 3D and 2D CNN architectures based on the 
model deep residual UNet (ResUnet) [20]. For this comparison 
the 2D data was sampled randomly from a set of CT scans, and 
the 3D data was taken as a whole-volume. The results showed 
a higher dice accuracy score for the 2D model but posited that 
this is likely due to a greater number of samples available when 
training on slices compared to volumetric data samples. This 
leads us to a heavily significant limitation in 3D segmentation 
modelling; the scarcity of annotated volumetric data. While the 
results indicated a higher dice score for the 2D model, the dis-
parity in sample availability between slice-based and volumet-
ric training data can skew this comparison, and is often the case 
in 2D and 3D comparative approaches.

Additionally, 3D architectures suffer from heavily increased 
processing requirements. The need to process volumetric data 
entirely and simultaneously, significantly increases the process-
ing power necessary to perform such network modelling, often 
leading to greatly increased training and inference times while 
also increasing the likelihood of overfitting to the data and re-
quiring more robust regularisation techniques. While present 
in all aspects of CNN development, the issue of model com-
plexity vs computational efficiency is particularly relevant for 
3D models. The results of [19] can be contrasted with the work 
of Avesta et al. [21] which compares 3D, 2D and 2.5D model 
architectures trained on 3430 and 60 MRIs separately, across 
three model styles, capsule networks, UNets, and nnUNets re-
spectively. While the 3D models required up to twenty times as 
much processing power, the results of all 6 total experiments 
unanimously agreed that the 3D architectures were most ef-
fective, maintaining the highest dice score and often quicker 
convergence during training which stands in stark contrast to 
the results of [19]. This indicates that, given sufficient data, 
3D architectures maintain their validity as a viable candidate 
for segmentation processes, in situations where the necessary 
memory storage and processing power is attainable.

Frequently researchers and practitioners adopt a 2.5D ap-
proach as a viable compromise striking a balance between the 
enhanced accuracy of 3D methodologies without taking on the 
inevitable computational and memory expenses associated with 
them. Recent research by Zhang et al. [22] and Ou et al. [23] 
suggests that for anisotropic volumes with a high discontinuity 
between slices, direct application of 3D CNNs will yield subop-
timal results due to learning of irrelevant features. In contrast, 
other sources [24,25] suggest that adopting a 2.5D structure is 
heavily restricting by confining the many possible 2D viewpoints 
possible from volumetric data to only the 3 cardinal axes, thus 



www.jclinmedimages.org              Page 4

not utilising its full potential. In light of these contrasting view-
points, it becomes evident that selecting appropriate segmen-
tation dimensionality necessitates careful consideration.

Zhang et al. [26] proposes a series of 2.5D model methodolo-
gies; multi-view fusion, fusing 2D/3D features and incorporat-
ing inter-slice information. Multi-view fusion involves generat-
ing slice-by-slice predictions using 2D CNNs from the 3 cardinal 
planes and fusing the results through a majority-voting process. 
Incorporating inter-slice information focuses on leveraging the 
spatial correlation between consecutive slices by treating them 
as a time series sequence and using techniques such as Recur-
rent Neural Networks (RNNs). Lastly, fusing 2D/3D features in-
volves combining features that have been extracted from 2D 
and 3D CNNs respectively to achieve a higher efficiency while 
still leveraging spatial information, a structure that would later 
be incorporated into the well-established 2.5D model design, 
D-UNet [27]. It was found that all three of the conceived meth-
ods surpassed the compared standard 2D network, however, 
the exact effectiveness of each method is dependent on the 
segmentation task at hand. Overall it was concluded that 3D 
CNNs are the best choice for maintaining accuracy alone, how-
ever consideration of the time and processing power required 
is once more entirely subject to the discretion of the reader. 
The paper highlights the importance of considering the specific 
characteristics of any medical data in use, and how, due to the 
sheer number of factors for consideration, choosing the most 
optimal model is a more nuanced, procedural question with no 
definitive answer.

Segmentation approaches

This section details some overarching approaches to medi-
cal segmentation processes. In practice, it is rare for the de-
scribed methodologies to be utilised in such a discrete, well 
defined manner. Instead it is commonplace to see combinative 

approaches of the following methodologies, often integrating 
aspects of a range of techniques leading to highly situation-spe-
cific algorithms developed to tackle segmentation of a specific 
organ, region or modality. Nevertheless, the overall topical defi-
nitions are described here.

Atlas-based segmentation

Many framework methodologies have been developed for 
accurate anatomical segmentation, often yielding reliable re-
sults [28,29]. One prominent early developed technique is at-
las-based segmentation, which consists of using pre-defined, 
manually contoured segmentations of similar scans, the titular 
“atlas”, to act as a reference guide for future segmentation of un-
seen scans. It is based on the principle idea that key anatomical 
areas will mostly maintain consistency in shape and size across 
patients, and makes use of alignment registration algorithms to 
align the contoured source image with the newly acquired test 
image. Atlas based segmentation has been developed for au-
tomatic computer vision-based segmentation for both singular 
and multi-organ segmentations, [28] however it is important to 
acknowledge that this approach is not without limitation. The 
success of atlas-based segmentation relies heavily on the preci-
sion and generality of the atlas contours provided, leading to a 
decreased reliability in cases where a diverse range of demo-
graphics are not considered. Atlas-based segmentation process-
es have additionally been shown to have decreased viability for 
application to pathological deviations or trauma-based scans 
due to an obvious deviation from the typical shape, having a 
strongly observed tendency to under-segment target images 
[30]. As a result, they have largely been superseded by more 
advanced methodologies. Modern approaches have integrated 
the atlas-based approach with more advanced neural networks 
to better capture aspects of the organ shape deviating from the 
norm [31-34] and heighten generalizability to promising results. 

Figure 4: Architectural structure diagram  for a Convolutional Neural Network (CNN) process. The network contains two 
convolutional blocks, where each block perfroms two convolutions followed by a max pooling process. The process ends 
with two fully-connected layers, before loss is calculated from the output to enable back-propagation [45].

Generative Adversarial Networks (GANs)

While atlas-based segmentation techniques benefit from 
simplicity, they quickly became overshadowed by more ad-
vanced methodologies capable of much more precise seg-
mentation. One such method that has seen such utilisation is 
Generative Adversarial Networks (GANs) [35,36] which, while 
typically used for image generation, translation and data aug-
mentation, have seen a recent rise in application to the medical 
segmentation industry in recent years.

A GAN is built around a two-network system, the discrimina-
tor and the generator networks respectively, which are trained 
together in a competitive style process. The generator network 
is responsible for mapping a path from a set of simulated noise 
data to a target distribution. Meanwhile, the discriminator is 
trained to distinguish between the real data and the simulat-
ed data of the generator. The competitive, adversarial training 
process allows both networks to gradually improve their respec-
tive abilities, the intended end point being for the generator to 
Create simulated data that is indistinguishable from actual data. 
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GANs have been applied to the segmentation problem, able to 
generate pixel-wise segmentation masks that can accurately se-
mantically classify the key region of interest within an accept-
able error [37,38].

As a whole, the community has adopted a semi-supervised 
approach to GAN-based segmentation. Li et al. [39] recently 
proposed a GAN-based system to perform segmentation on a 
set of hippocampus data, where two models were contrasted, 
adopting fully-supervised and semi-supervised learning mod-
els respectively across four experiments. It was concluded that 
the semi-supervised GAN approach trained on unlabeled data 
maintained a consistent improved segmentation accuracy over 
the compared fully-supervised model, having an average ac-
curacy increase of 0.4%. It is suggested that semi-supervision 

makes more efficient use of a limited dataset, hence its high 
applicability within the specific application. With that said, ave-
nues of unsupervised models, particularly self-supervised mod-
els [40-42], are still regularly explored for specific applications.

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) first proposed by [43] 
have emerged as the prevailing methodology for medical image 
segmentation, gaining widespread adoption and recognition 
within the field. Similar to GANs, CNNs leverage deep learning 
to facilitate accurate and efficient segmentation, however CNNs 
are built around the concept of feature extraction. Features of 
the provided training images are automatically identified and 
learned by the network through application of convolutional 
operations. 

Figure 5: Comparison of three conventional medical imaging processes. Classification (a) involves the labelling of an en-
tire image based on the image contents. Localization (b) identifies and isolates key objects within the images via bound-
ing boxes. Segmentation (c) applies pixel-level labelling to generate image label maps providing information on the exact 
shape of the identified objects [48].

Figure 6: Diagram of typical encoder-decoder network structure used to perfrom semantic segmentation on a test im-
age. A series of convolutional blocks make up the encoder. The decoder perfroms the reverse process, inducing upscaling 
of image quality [66].

This allows the CNN to capture local spatial feature informa-
tion and exploit spatial hierarchies, enabling the discernment 
of relevant patterns within the provided images. Convolution 
is enabled by passing a kernel, typically a 3x3 matrix across the 
image in a sliding-window fashion, performing matrix multipli-
cation at each step to generate a feature map, where higher 
pixel values correspond to the presence of that feature. By 
convolving the image with multiple kernels, a range of features 
are extracted. This process replaces the fully connected lay-
ers present in typical neural networks, a necessary adaptation 

to prevent impractical processing time when handling image-
based data [44-47].

Figure 4 [45] shows a diagrammatic representation of a typi-
cal CNN architecture. After a series of convolution processes, 
max pooling is performed to reduce spatial resolution and ex-
tract the most salient features. The process typically ends with 
one to two fully connected layers to integrate the extracted fea-
tures and perform high-level segmentation. Back propagation 
allows the CNN to learn and refine the weights and biases of the 
network by iteratively propagating the error from the output 
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layers back through the network, adjusting the values to better 
minimise the loss function.

Architectural structure

CNNs have seen substantial use, as well as countless devia-
tions adapted for specific use cases within the field. This section 
covers notable structural adaptations of CNNs aimed at opti-
mising their suitability for the task of image segmentation.

Region-based CNNs

The natural development of the CNN leads us to Region-
based CNNs (R-CNNs), an application of CNNs to object detec-
tion (Figure 5). In the seminal paper, Girshick et al. [48] pro-
posed it as a novel approach to leverage the versatility of CNNs 
in a more region based framework that showed a 30% improve-
ment over the standard object detection systems at time of 
publication.

R-CNNs introduce a region proposal stage, which isolates 
objects of interest via bounding boxes, followed by an object 
detection system making use of conventional CNNs. Utilising 
a region proposal stage efficiently reduces the search space, 
minimising the computational burden placed on the system. 
Each individual region can then be analysed by a separate CNN 
process. R-CNNs built upon the success of CNN-based object 
detection systems with a generally reduced processing time, 
increased robustness when handling differently sized objects, 
better handling of partially obscured regions and an improved 
receptive field. Processing time was reduced with an improved 
accuracy by Girshick et al. [49] by introducing Region of Inter-
est (ROI) pooling layers for more efficient feature extraction and 
sharing of convolutional features across multiple region propos-
als. This was further improved by Ren et al. [50] who integrated 
a Region Proposal Network (RPN) capable of generating region 
proposals without the need for external algorithms.

Pixel-wise instance segmentation ability for each bounding 
box region was later incorporated into the R-CNN process by 
He et al. [51]. Building upon the foundation of faster R-CNNs, 
mask R-CNNs introduce a binary mask channel output along-
side the pre-established class and box-offset prediction out-
puts. The parallelization of the channels simplifies the process 
compared to the standards at the time which used prediction 
for classification [52], while preserving the advantages of fast-
er R-CNN. The paper [51] presents a comparison of methods 
showing that mask R-CNN outperforms all state-of-the-art ap-
proaches at time of publication. Owing to its consistently reli-
able segmentation accuracy and preferable processing time, R-
CNN has maintained relevance with minimal changes in design 
since its conceptualization, seeing many recent applications in 
literature, with applications to tumour detection [53,54], lung 
segmentation for covid-oriented [55] and general purpose use 
cases [56,57], and blood vessel segmentation [58] to name a 
few. Studies such as that by Felfeliyan et al. [59] and Dandil et 
al. [55] confirm the validity of this approach with evaluation 
metrics rivalling other established methods. In comparison, a 
study by Dogan et al. [60] proposed a hybrid solution utilising 
Mask R-CNNs localization ability integrated into a novel UNet 
architecture for segmentation. Compared against 16 state-of-
the-art models, the proposed system unanimously achieved 
higher segmentation accuracy on pancreatic data, once again 
suggesting hybrid methodologies as a promising approach for 
improving segmentation performance beyond what standalone 
algorithms can perform.

Fully Connected Networks (FCNs)

While CNNs have seen extensive use within medical image 
segmentation tasks and have demonstrated remarkable per-
formance and versatility, their inherent limitation lies in their 
inability to capture fine-grained details caused by the down-
sampling processes. As a result, alternatives have been devel-
oped to combat these issues. Fully Convolutional Networks 
(FCNs) [61,5] have recently emerged as a specialised archi-
tecture designed explicitly for development of high-accuracy 
segmentation on the pixel level. FCNs replace the late-stage 
fully-connected layers present within a conventional CNN with 
additional convolutional layers, preserving a higher level of spa-
tial information throughout the network. In order to address 
the reduction in resolution caused by the convolutional and 
max pooling layers, transposed convolutions or upsampling 
techniques are often utilised to restore the output to match 
the resolution of the input image, a necessity for segmentation 
mapping. This also allows for efficient mapping of both local 
and global contextual information, heightening the segmenta-
tion ability further.

Deep supervision is often deployed during the training proc-
ess of FCNs [62,63]. Building upon the idea of a loss function 
quantifying performance at the end of a network, deep super-
vision involves the integration of additional classifiers at regu-
lar intervals within the network architecture, allowing for bet-
ter propagation of gradients and thus more efficient, effective 
learning.

FCNs quickly became the gold standard within medical im-
age segmentation with the development of UNet [64] a key 
model architecture that made use of skip connections within 
an encoder-decoder setup. UNet has received unprecedented 
attention within the field of medical segmentation, and has 
served as a catalyst for the development of numerous deriva-
tive models. The remarkable impact of UNet and its influence 
necessitates a dedicated exploration in section 2.2.4.

FCNs have since seen their own wave of development with 
adaptations specialised for key niche purposes being published 
regularly. Region-based FCNs, inspired by Mask.

Encoder-decoder networks

Within the field of FCNs, a multitude of specialised architec-
tures have surfaced, signifying notable advancements for the 
greater medical segmentation landscape. Encoder-decoder 
networks [65] are one such advancement, adopting a specific 
convolutional structure. Figure 6 [66] shows the full encoder-
decoder architecture with each individual layer’s function la-
belled. The lack of any non-convolutional layers defines the 
encoder-decoder architecture as an FCN.

These networks are distinguished by their division into two 
distinctive components; namely the encoder and decoder 
stages. During the encoder stage, image dimensionality is pro-
gressively reduced through a series of convolution and pooling 
layers, allowing the capture of hierarchical features at different 
levels of abstraction. These features therefore capture both 
global and local information, enabling the network to learn 
rich representations of the input image. Typically the decrease 
in resolution is met with an increase in the number of feature 
maps generated at that layer, motivated by the need to capture 
increasingly abstract features of the image.
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The bottleneck layer consequently acts as a bridge between 
the encoder and decoder sections. The purpose of the decoder 
is to transform this representation back into a full-resolution 
output matching the original input domain. The decoder oper-
ates in a reverse-manner to counteract the encoder, perform-
ing a series of up sampling deconvolutions via the use of trans-
posed convolutional layers. This gradually increases the spatial 
resolution, recovering the spatial details lost during the down 
sampling process. The decoder outputs a dense, pixel-level seg-
mentation map having learned inherent spatial and contextual 
features from the up sampling/down sampling process, and 
combining them with higher level semantic information from 
the encoder. This allows the network to incorporate global con-
text and semantic understanding into the segmentation map. 
Encoder-decoder based networks have shown superior per-
formance compared to traditional CNN architectures, particu-
larly during segmentation of smaller objects with noisy bounda-
ries [67].

UNet

Encoder-decoder networks have maintained relevance 
within the genre of specialized medical segmentation, thanks 
in large part to the emergence of the UNet algorithm [64]. 
UNet has seen significant attention and has been extensively 
researched within the medical imaging community owing to its 
exceptional performance in a range of applications including tu-
mour segmentation, lesion detection and single or multi-organ 
processing, as well as its remarkable ability to successfully seg-
ment smaller objects [68]. Figure 7 shows the typical UNet ar-
chitecture as presented in [64]. The architecture makes use of 
the encoder-decoder setup as described in 2.2.3, where the en-
coder extracts hierarchical features from the input image, and 
the decoder gradually up samples the features to reconstruct a 
full-resolution output map. UNets key innovation to the field is 
the integration of skip-connections between corresponding lay-
ers in the encoder and decoder branches. These skip-connec-
tions enable the transfer of information between the encoder 
and decoder at multiple levels of resolution and abstraction. 
By introducing this method of information transfer, the UNet 
architecture addresses the issue of data loss during the down 
sampling section, and facilitates the integration of fine-grained 
details from the encoder with high-level semantic representa-
tions from the decoder.

Figure 7: UNet architecture, based on encoder-decoder networks 
[64].

In a recent study by Baccouch et al. [67] the performance of 
various segmentation methods including UNet, Faster R-CNNs, 
CNN and 3D-FCNs were evaluated for the automatic segmenta-
tion of cardiac MRI scans. Dice score was utilised as the evalu-
ation metric. The results clearly showed that models utilising 
UNet architecture, be it entirely or in conjunction with other 
methods, achieve a significantly higher dice score than alter-
nate methodologies, with UNet based methods achieving dice 
scores of ~94 and non-Unet methods reaching ~84 on average. 
The worst performing UNet method achieves an equal dice 
score to the best performing alternative method. UNet models 
additionally showed more promising results for the additional 
metrics, Hausdorf distance and accuracy, achieving consistently 
higher results than other models. Overall, this paper confirms 
the validity of UNet and UNet hybrid approaches as suitable in-
ter-organ segmentation techniques. The paper posits that this 
significant increase in ability may be due to the circumventing 
of an inherent limitation in conventional CNNs, the restriction 
on input image size as detailed in [69].

UNet has established continued relevance in the field of 
medical imaging thanks in large part to its inherent flexibility 
and ease of customization of architecture and pre-processing. 
UNet’s architecture allows for easy modifications and integra-
tion of domain specific knowledge to address unique novel 
challenges such as identification of distinct pathologies or seg-
mentation of non-conventional organ shapes. In recent years, 
the development of UNet-based adaptations has shown no 
signs of deceleration. UNet++ [70,71] has shown itself as an ad-
aptation of particular notoriety, introducing nested skip path-
ways building upon UNets established skip connections. Nested 
pathways enable multiple connections to be made across res-
olutions between different tiers of the encoder and decoder, 
thus allowing features to be captured at multiple scales more 
effectively, leading to an improved performance in capturing 
of fine details. The hierarchical nature of nested skip pathways 
additionally facilitate better feature reuse and gradient flow 
through the network, enabling more efficient training proc-
esses and quicker convergence. In its seminal paper, Zhou et al. 
[70] demonstrated the increased accuracy of UNet++ with deep 
supervision over UNet and wide UNet across 4 different medi-
cal imaging datasets. Results showed an average increase in In-
tersection over Union (IoU) of 3.4 and 3.9 respectively. A later 
study also by Zhou et al. [71] provided further comparisons of 
effectiveness for both semantic and instance segmentation cas-
es, using both 2D and 3D architectures. For semantic segmenta-
tion, UNet++ was compared against standard and wide UNet, 
with UNet++ being seen to consistently outperform them. For 
instance segmentation, Mask R-CNNs were compared against a 
separate version utilising nested skip pathways, dubbed “Mask 

Figure 8: Comparison of segmentation ability for  5 slices by (a) 
UNet++ and (b) SUNet++ [72].
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Figure 9: Published works summarized by year of publication and (a) – Segmentation methodology. (b) – Primary 
organ(s) used for segmentation.

R-CNN++”, and once again results unanimously showed higher 
performance on all evaluation metrics. Results suggest that in-
clusion of nested skip pathways over the original skip connec-
tions leads to consistently better feature learning and segment-
ing ability.

UNet++ has in turn seen its own wave of developmental off-
shoots. A recent paper by Zhang et al. [72] discusses the ap-
plication of UNet++ to small-scale precise target segmentation, 
and proposes an altered algorithm. SUNet++ seeks to increase 
segmenting ability for fine structures through inclusion of 3-di-
mensional context, and an attention mechanism [73,74] to 
better focus on identified key areas of interest. The model was 
compared against a series of other UNet derivatives including 
UNet++ UNet3+ and nnUNet. Results derived from segmenta-
tion of fine structures within liver scans show SUNet consist-
ently achieving the highest Positive Predictive Value (PPV) 
compared to other models, however similar metrics such as 
the sensitivity and Hausdorf distance remain similar across all 
models. Nevertheless, a higher PPV suggests more confidence 
in positive predictions, a key requirement particularly for seg-
mentation of fine smaller structures. Figure 8 [72] shows the 
predictive segmentations from UNet++ (a) vs SUNet++ (b) for 
5 similarly placed slices. As can be seen, no structure was de-
tected by the UNet++ model in 3 of the slices, whereas the ad-
ditional 3D contextual consideration allows SUNet++ to better 
segment these structures.

While many of the papers discussed within this review claim 
to achieve previously unprecedented accuracy across evalu-
ation metrics, it is important to consider the environment in 
which they are developed. Medical image segmentation de-
mands specialised architectures and training schemes to tackle 
the intricacies of different anatomical features. However this 
customization often leads to models that are heavily overfitted 
to the specific problem, limiting the generalizability and appli-
cability to broader scenarios. This is an issue that has become 
increasingly relevant in modern publications where a myriad of 
models are presented as superior solutions without adequate 
validation on diverse datasets, or fair comparison to other 
state-of-the-art methodologies. Consequently a challenge aris-
es in identifying segmentation algorithms that genuinely excel 
in generalised cases, and not solely in the limited window of 
scenarios they are presented with. This establishes the need for 
more robust, generalised testing frameworks. Recognising the 
need for more robust frameworks, Isensee et al. [75] developed 
NNUNet, a framework for UNet based medical segmentation 

designed for self-adaption. NNUNet goes beyond traditional 
methodologies by incorporating self-adaption mechanisms 
which allow the framework to dynamically adjust the architec-
ture and hyperparameters of the model it is applied to based on 
the unique input data it is provided with. This adaptive nature 
allows NNUNet to accurately handle variations in input resolu-
tion, geometry and distribution on a procedural, case-by-case 
basis without the need for manual fine tuning. To name a few, 
NNUNet al.lows automatic modification of the model architec-
ture, data augmentation, resolution, and cropping.

To evaluate the ability of NNUNet, experiments were con-
ducted in the context of the Medical Segmentation Decathlon 
Challenge (MSDC) which provided a set of 10 distinct and di-
verse datasets encompassing various medical disciplines, image 
modalities and image sizes. It was found that as of the paper’s 
publication, models equipped with NNUNet outperformed all 
other models in the online leaderboard challenge achieving the 
highest dice score metric in all cases with one class exception. 
These results demonstrate the outstanding performance and 
versatility provided by NNUNet in handling complex segmenta-
tion in diverse datasets without prior pre-adjustment. The suc-
cess of NNUNet highlights its potential as a leading framework 
for medical segmentation tasks, offering a promising solution 
for overcoming overfitting and heightening a model’s generaliz-
ability.

Since its conception NNUNet has been largely accepted into 
many model frameworks, and its ability scrutinised in a wider 
range of scenarios. Recently models utilising NNUNet as its base 
saw 4th and 5th places in the HECKTOR 2022 head and neck 
segmentation challenge [76] and the FLARE 2022 abdominal or-
gan segmentation challenge [77] respectively.

NNUNet has since seen large-scale adoption within the im-
aging field thanks to its extraordinary automatic adaptability to 
a range of use cases, with varying applications in the fields of 
breast tumour MRI scans [78], foetal ultrasound scans [79], lung 
tumour diagnosis [80], and brain tumour segmentation [81] to 
name a few.

Recent publications

So far we have discussed the significant overarching meth-
odologies and processes used within the medical segmentation 
field. We will now cover the general landscape of publications 
over the previous few years.
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In total, 100 papers presenting newfound segmentation 
methodologies have been considered for the analysis, and have 
been categorised by their overarching method and primary tar-
get organ. Figure 9a displays the tallied results for each of these 
categorization means. FCNs have firmly established themselves 
as the popular means of segmentation, thanks in large part to 
the versatility and ease of modification within the UNet archi-
tecture.

An increase in publications exploring FCN architectures can 
be seen year-by-year. The recent emergence of automatic pa-
rameter adjustment methodologies such as NNUNet to correct 
the theorised overfitting issues within personalised UNet mod-
els will likely lead to continued and further adoption of these 
architectures. In contrast, despite recent publications showing 
strong potential for region-based integration with FCN archi-
tectures [12,82], the technique has not been largely adopted 
within the field, seeing minimal recent attention.

While GAN based segmentation methods have seen note-
worthy publication in recent years, it is important to consider 
that this has been met with similar publication numbers in 
related fields, such as object detection and diagnosis [83,84], 
image generation [85,86,87] and data augmentation [88,89] to 
name a few.

Author Year Modality Anatomy Model type

Liu et al. [96]
Vijendran et al. 

[97]
Xu et al. [98]
Liu et al. [99]
Li et al. [100]

Gu et al. [101]
Zhou et al. 

[102]

2023
2023
2023
2022
2021
2021
2020

Multimodal
Multimodal
Multimodal

CT scan
CT scan

MRI
CT scan

Brain
Brain

Lung, skin 
lesion

Brain, cel-
lular

Blood ves-
sels

Skin lesion 
& foetal

Multi-organ

Multi-task 
disentanglement 

framework
CNN with adaptive 
Firefly optimization

Dual-stream rep. 
fusion learning

Lightweight dual-
domain network
Triple attention 

network
Comprehensive 
attention-based 

CNN
CNN with prior 

awareness

CNNs

GANs across various domains is presently the subject of 
comprehensive investigation. As research endeavours continue 
to explore the multifaceted applications of GANs, their adop-
tion into a diverse scope of fields holds the promise of wide-
ranging transformative impact.

Figure 9b shows the organ distribution across the examined 
segmentation papers. For the pelvic and abdominal cases, um-
brella terms were used as the comprehensive visualisation of 
the entire area, encompassing both tissue and organs, neces-
sitated the segmentation of a diverse array of structures within 
the region.

More complex organs such as the pancreas, whose difficulty 
in segmentation comes from its smaller size and close proximity 
to other abdominal organs, are yet to see the same attention, 
however algorithms specifically designed for pancreatic use 
have emerged. Attention mechanisms, which first define a key 
area of focus within the image, have been shown to be effec-
tive in pancreatic segmentation, largely circumventing the issue 
presented by abdominal organ proximity [73,90,91]. Indeed, ac-
curate segmentation of the pancreas in particular has proved to 
be one of the more challenging tasks within the current state-

of-the-art.

Lung segmentation has seen a significant rise in recent years. 
Influenced by the recent COVID-19 pandemic, investigations 
into segmentation and automatic diagnosis of lung pathologies 
have surged [40,55,92-95] to meet the need for better diagnos-
tic methodologies. As anticipated, FCNs emerge as the prevail-
ing methodology within this field demonstrating their wide-
spread adoption, however GAN-based approaches maintain a 
noteworthy presence in the literature, likely attributed to their 
utilisation in tackling classification challenges. 

Author Year Modality Anatomy Model type

Fu et al. [3] 2018 MRI Multi-organ CNN with correc-
tion network

Technical challenges

While great advancements have indeed been made in the 
field of medical imaging, many long-standing sources of error 
within the field have not yet received adequate solutions. This 
section will cover the main problem areas for medical segmen-
tation, and the processes used to combat these issues.

The data scarcity problem

Data scarcity can place a significant restriction on the ability 
of medical segmentation models, heavily impeding their devel-
opment and performance. This scarcity arises from a range of 
factors, including limited access to data with appropriate for-
matting and quality, appropriate screening subjects, and strict 
rules regarding medical data access and privacy. Additionally, 
manual annotation of scans is a laborious and time-consuming 
process requiring high level knowledge and training from medi-
cal professionals, further limiting any possible data output. The 
insufficiency in comprehensive, diverse datasets heavily ham-
pers the training processes of otherwise robust models, leading 
to reduced accuracy and often enabling overfitting to the data 
provided. This issue holds particular importance in niche seg-
mentation cases, where access to appropriate scans of specific 
rare conditions or pathologies is exceptionally limited. This scar-
city and limited access to appropriate data has led to a range of 
work-around solutions. Namely, data augmentation, establish-
ment of collaborative, open source data sharing platforms, and 
integration of transfer learning strategies.

Data augmentation operations [85,161,162,89] allow for 
the generation of additional training data via the application 
of transformation processes to the existing dataset. By apply-
ing transformations such as rotations, scaling, contrast adjust-
ments, mirroring or random cropping, distinct training images 
can be generated that differ enough from the original to pro-
vide meaningful additional context and variation.

These processes can also increase the generalizability of a 
model, better simulating the deviations in imaging conditions 
and contrast quality present in real images produced from dif-
ferent scanner setups. While augmented data is not wholly new 
and therefore not as valuable as datasets entirely independent 
from existing samples, the techniques presented have shown 
noteworthy and consistent improvements in model robusticity, 
versatility and accuracy.

Transfer learning [163] has emerged as a powerful technique 
within the field, providing a feasible solution capable of circum-
venting the limitations of insufficient data as well as computa-
tional resources. Transfer learning relies on neural networks’ 



www.jclinmedimages.org              Page 10

FCNs

Author Year Modality Anatomy Model type

Cai et al. [103]
Zhang et al. [72]

Elghazy et al. [104]
Kumari et al. [105] 
Asnawi et al. [106]

Shangzhu et al. [95]
Li et al. [107]

Saha et al. [93]
Staybe et al. [108]
Hassanzadeh et al. 

[109]
Dang et al. [110]

Rebaud et al. [76]
Sun et al. [111]

Abdo et al. [112]
Hsu et al. [113]
Peng et al. [114]
Wang et al. [115]
Singh et al. [116]

Inkeaw et al. [117]
Alqaoud et al. [78]

Lee et al. [80]
Jiang et al. [118]
Peng et al. [119]

Schachner et al. [79]
Guan et al. [120]
Diniz et al. [121]
Zhou et al. [12]

Zhou et al. [122]
Sun et al. [123]
Xue et al. [124]

Li et al. [9]
Alam et al. [125]
Zhang et al. [126]

Xie et al. [127]
Zhang et al. [128]

Fu et al. [129]
Enshaei et al. [130]
Almeida et al. [131]

Luca et al. [132]
Zopes et al. [133]

Mahmud et al. [94]
Mohammadi et al. 

[134]
Zhou et al. [27]

Asipong et al. [135]
Xu et al. [136]

Khan et al. [137]
Zhang et al. [22]

Ranjbarzadeh et al. 
[92]

Zhang et al. [90]
Li et al. [138]

Zhou et al. [71]
Jemaa et al. [139]
Wang et al. [140]

2023
2023
2023
2023
2023
2023
2023
2023
2023
2023
2023
2023
2022
2022
2022
2022
2022
2022
2022
2022
2022
2022
2022
2022
2022
2022
2022
2022
2022
2021
2021
2021
2021
2021
2021
2021
2021
2021
2021
2021
2021
2021
2021
2021
2021
2021
2021
2021
2020
2020
2020
2020
2020

MRI
MRI

Multimodal
MRI

CT scan
Multimodal
Multimodal

CT scan
CT scan

MRI
MRI

PET/CT
CT scan

Cone-beam CT scan
Cone-beam CT scan

CT scan
CT scan

MRI
CT scan

MRI
CT scan

Multimodal
Ultrasound
Ultrasound

MRI
CT scan

Ultrasound
CT scan

Ultrasound
PET/CT
CT scan
X-Ray

CT scan
CT scan
CT scan
PET/CT
CT scan

CT and MRI
Multimodal
Multimodal

CT scan
CT scan

MRI
CT scan
PET/CT

Multimodal
MRI

CT scan
CT scan
PET/CT

Multimodal
PET/CT CT scan

Brain
Liver
Liver
Brain
Lung

Multi-organ
Multi-organ

Chest
Head

Multi-organ
Cardiac
Cardiac

Head & neck
Chest/bone
Jaw/teeth
Jaw/teeth

Brain
Jaw/teeth

Cardiac
Brain

Breast
Thoracic

Multi-organ
Foetal

Foetal Torso
Brain

Cardiac
Pelvic & cellular

Foetal
Eye

Wrist
Bone
Lung
Brain

Cardiac
Abdominal

Lung
Chest
Chest
Cervix
Brain
Lung

Multi-organ
Brain

Lung Neck
Multi-organ

Lung
Pancreas
Pancreas

Lung
Whole body
Multi-organ

3D UNet-based
3D UNet-based

Dual/Triple stream UNet+ResUNet
Dual stream ResUNet

Multiple 3D UNet-based models
Multi-scale UNet adaptation (MSUNet)
UNet-based multi-feature association

Attention-based dense UNet
UNet-based hierarchical CNN stack
Ensemble Evolutionary UNet-based

2D UNet-based
NNUNet variations

2-stage cascaded UNet-based
Attention-UNet-based

2D, 2.5D, 3D and 3.5D UNet variations
Improved UNet with attention mechanism
Improved UNet with attention mechanism

2D and 3D DeepResUNet
3D CNN (DeepMedic)

Cascaded NNUNet
NNUNet and NNFormer-based
Dual-branch UNet adaptation

2D dual-decoder network
NNUNet, ResNet, VGG models

Attention-based recalibration network
UNet with concatenation block

Asymmetrical encoder-decoder network
Proposal-free FCN

Unified context-refinement network
V-Net based co-learning network

UNet and Otsu-based
2D UNet-based
2D UNet-based

FCN with atrous convolution
3D UNet-based

UNet with spatial attention module
Ensemble FCN network

3D UNet-based
UNet-based

3D UNet-based
Multi-encoder-decoder network

ResUNet-based
DUNet-based

2D UNet-based
SegNet-based

Cascaded multi-encoder-decoder network
Cascaded 2.5D UNet

Cascaded CNN
FCN with multiscale mixed attention

3D VNet-based
UNet++

2.5D cascaded CNN
Adaptive fully-dense UNet

Author Year Modality Anatomy Model type

Liu et al. [141]
Wang et al. [142]
Zhang et al. [143]

Jha et al. [144]
Kim et al. [145]
Zhang et al. [82]

Moradi et al. [146]
Duan et al. [147]

Lei et al. [62]
Chan et al. [148]
Wang et al. [63]

Weng et al. [149]
Van Harten et al. [150]

Zhang et al. [151]
Chlebus et al. [61]
Isensee et al. [75]
Oktay et al. [73]

2020
2020
2020
2020
2020
2020
2020
2019
2019
2019
2019
2019
2019
2019
2019
2018
2018

CT scan
Multimodal
Multimodal
Multimodal

CT scan
CT scan

Echocardiogram
MRI

Ultrasound
CT scan

MRI
Multimodal

CT scan
DCE-MRI
CT scan

CT & MRI
CT scan

Liver
Skin lesions
Skin lesions
Multi-organ
Abdominal
Multi-organ
Multi-organ

Cardiac
Cardiac

Head and neck
Prostate
Prostate

Multi-organ
Breast
Breast
Liver

Pancreas

Multi-channel Fusion Net
RESNet based with boundary awareness

Dense UNet-based
Double UNet architecture

3D patch-based CNN
Cascaded V-Net

Multi-feature pyramid UNet
Segmentation & Landmarking (SSLLN)

Deeply supervised VNet
Multi-task learning CNN

3D Dilated FCN
NAS-UNet
2.5D UNet

Mask-guided FCN
2D UNet-based

NNUNet
Improved UNet with attention mechanism
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R-FCNs hello

Author Year Modality Anatomy Model type

Ma et al. [81]
Liang et al. [152]

2022
2020

MRI
CT scan

Brain
Head & neck

Region-based NNUNet
Multi-view fine-grain ROI-based CNN

GANs

Author Year Modality Anatomy Model type

Chaturvedi et al. [42]
Raja et al. [153]

Li et al. [39]
Shabani et al. [40]
Tyagi et al. [154]
Wei et al. [155]

Li et al. [91]
Xu et al. [156]

Murugesan et al. [157]
Costa et al. [158]

2023
2023
2022
2022
2022
2021
2021
2021
2020
2018

High-res image
MRI
MRI

CT scan
CT scan
CT scan
CT scan
CT/CTA

MRI
Retinal image

N/A
Brain
Brain
Lung
Lung
Liver

Pancreas
Heart

Prostate & heart
Retinal blood vessels

Cut-and-Paste trained GAN
GAN with K-means clustering & Mobilenet

Semi-supervised GAN
3D GAN mask generator with 2D UNet

GAN generator with UNet
GAN with mask RCNN enhancement

GAN with attention mechanism
Cycle consistent GAN

SEG-GLGAN with UNet implementation
Adversarial Autoencoder-GAN

R-CNNs

Author Year Modality Anatomy Model type

Tu et al. [159]
Dandıl et al. [55]
Zhang et al. [53]
Wei et al. [155]

Dandıl et al. [57]
Dogan et al. [60]

2023
2022
2022
2022
2021
2021

CT scan
CT scan

MRI
CT scan
CT scan
CT scan

Liver
Lung

Breast
Liver
Lung

Pancreas

Slice fusion Mask R-CNN
Mask R-CNN based

Parallel region proposal Mask R-CNN
GAN Mask R-CNN

2D Mask R-CNN based
2.5D Mask R-CNN with UNet

Author Year Modality Anatomy Model type

Cai et al. [160]
UlHaq et al. [54]

Hu et al. [56]

2021
2021
2020

Standard digital image
CT scan
CT scan

Miscellaneous
Liver
Lung

Cascaded R-CNN
ResNet-based Mask R-CNN

CNN Mask R-CNN

Atlas-based

Author Year Modality Anatomy Model type

Xie et al. [33]
DIng et al. [34]

2023
2022

MRI/CT
MRI/CT

Brain
Heart & Liver

Multi-Atlas segmentation with DCNN
BiRegNet atlas-to-target registration

ability to capture generic, transferable features, leveraging the 
experience gained from pre-trained models and transferring 
that knowledge to related specific tasks. This in turn reduces 
the training time needed as well as increasing generalisation 
for models with limited data. Transfer learning has displayed 
remarkable success across image classification, object detec-
tion and segmentation, and development of new methods of 
transfer is a prominent field of study. Apostolopoulos et al. 
[164] proposed the advantage of transfer learning for fast de-
tection of COVID-19, allowing for fast development of capable 
detection algorithms. While promising results were gleamed, it 
was proposed that suboptimal amounts of data remained the 
limiting factor at that time. This work was built upon by Das et 
al. [165] who proposed the alternate use of x-ray scans over CT 
due to higher availability and prevalence of X-ray machines over 
CT scanners. Using transfer learning with a series of CNNs, a 
classification model was developed that is capable of correctly 
identifying COVID-19 patients with an accuracy of 99.96% from 
a dataset of combined pneumonia and healthy patient scans, 
and 99.92% from tuberculosis, pneumonia and healthy scans 
respectively. Transfer learning allowed for suitable, successful 
algorithms to be developed in a timely manner, a vital require-
ment during the early stages of the COVID-19 pandemic.

GANs have been applied to the data scarcity problem, apply-
ing their inherent generative ability and adversarial, combative 
learning approach to generation of artificial datasets indistin-
guishable from real data. Mann et al. [166] recently demon-
strated the ability of GANs for this application, utilising a deep 

convolutional GAN (DCGAN) setup for generation of COVID-19 
positive chest scans. Generated image accuracy was measured 
by testing the images on a classifier algorithm provided by the 
COVID CT repository, and an accuracy of 40% was seen, show-
ing potential for the effectiveness of procedural data generation 
methods.

Rejusha et al. [85] recently presented a comparison of the 
effectiveness of GAN-generated data vs conventional augmen-
tation practices applied to Alzhiemers brain scans. Accuracy 
held by the DCGAN reached as high as 83%, greatly surpassing 
the traditional augmentation and baseline Resnet accuracies 
of 63%. This highlights the potential for GAN-based generation 
to address and potentially mitigate the data scarcity problem 
within segmentation practices.

Class imbalance

Class imbalance poses a significant challenge to segmenta-
tion algorithms where the training datasets have a significant 
difference in positive to negative cases. In the case of medical 
segmentation, class imbalance presents itself as images with 
a small number of relevant labels, and a majority background. 
This is extremely common in many avenues of medical imag-
ing, including tumour detection, pathology identification and 
organ segmentation. The consequence of class imbalance is 
biassing towards the negative or background class, leading to 
suboptimal performance in segmentation of the crucial areas. 
Most commonly, this issue is tackled by the deployment of spe-
cialised weighting functions such as weighted cross entropy 
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loss, which place a larger emphasis on the identification of the 
minority class, prioritising reducing false negatives over false 
positives. Weighted cross entropy loss has seen deployment in 
a series of recent papers, seeing significant success compared 
to other state-of -the-art processes [167,168].

Ensemble models, algorithms which train multiple models 
with differing hyperparameters, have additionally emerged as 
a method of combating class imbalance. A series of models 
named “base learners” are trained on the data with a range 
of deviating hyperparameters, training strategies and random 
seeds, extracting different feature information from one anoth-
er. Each individual model generates a prediction mask, which 
are combined to form a conclusive overall prediction image, 
often through group-voting procedures or weighted averages. 
While not highly present within the field of medical segmenta-
tion, the cases that do use it have seen promising results [130], 
and uses within the wider medical imaging field such as detec-
tion diagnosis [169] have been reported.

Boundary complications

Of course, there too exist inherent flaws within the image 
data itself. Ambiguous or blurred boundaries between objects 
are commonplace and can lead to reduced accuracy or learning 
of poor features. A range of factors across different imaging mo-
dalities contribute to this process, such as the nucleus relaxation 
time when using MRI scanners, or deviating attenuation coeffi-
cients in objects in the body affecting CT scan quality. Due to the 
complexity of the image gathering processes and the fact that 
the flaws inherently lie within the human body, this challenge 
is not one so easily solved, although Image augmentation tech-
niques have been shown to aid in this issue. Shariful et al. [125] 
presents a new augmentation approach, providing a compari-
son of results from a UNet trained on this data vs an identical 
model trained on conventional augmentation techniques. The 
model using the custom augmentation process displayed both 
heightened qualitative and quantitative performance, reducing 
the effect of overfitting and blurring of boundaries. While this 
technique does not address the issue at its source, it nonethe-
less reduces the impact of said issue. Further study will reveal 
the longevity and wider applicability of this approach.

Multi-modal fusion has also emerged as a promising ap-
proach to combat blurred boundaries and partial obscurity of 
key objects. Partial obscurity can lead to challenges in accurate-
ly delineating object boundaries or correct identification of ob-
jects entirely, and has proven itself to be a consistent challenge 
within the field. Multi-modal fusion integrates information from 
a range of imaging modalities, increasing the overall variation 
in data gathered and allowing for a more comprehensive im-
age set. Mainly, the complementary nature of combining dif-
ferent modalities allows for increased differentiation of poorly 
defined or otherwise obscured object boundaries. Multi-modal 
fusion image generation has been utilised across the field, 
with significant recent use in the fields of brain segmentation 
[97,95,105,154] and liver segmentation [124,104].

Multi-modal imaging, despite its advantages, also suffers 
from a notable drawback when compared to single-mode imag-
ing. The inherent challenge lies in the scarcity of multi-modal 
data, which necessitates the simultaneous availability of mul-
tiple scanning machines. This limitation exacerbates the data 
scarcity problem already present within medical segmentation, 
making it even more pronounced for the case of multi-modal 
imaging.

Conclusion

This paper has detailed the general landscape of medical 
segmentation algorithms and relevant processes to the image 
processing procedure as of the time of writing. Key papers of 
current relevance or contextual significance have been dis-
cussed. While FCNs maintain dominance over the field seeing 
the vast majority of publications within recent years, advan-
tages still lie within alternative architectures. GANs have par-
ticularly seen use in a range of related fields such as classifica-
tion, diagnosis and image generation, a versatility in application 
largely unseen by other architectures.

While UNet-based algorithms have been widely adopted for 
segmentation tasks, individual adaptations of the model are 
commonplace, seeing tremendous publications of recent years 
claiming heightened accuracy and lower latency. Thus, fears of 
overfitting have led to the development of NNUNet, an auto-
matic hyperparameter adjustment algorithm whose versatility 
has been demonstrated. NNUNet has shown promising results 
in training accurate segmentation models on limited training 
datasets, cementing its relevance within the industry.

Despite rapid advancement in the field, segmentation algo-
rithms have not fully resolved the core challenges they face, de-
spite methods of alleviating them becoming commonplace. Is-
sues of data scarcity, quality and consistency continue to be the 
dominant limiting factor regarding advancement in segment-
ing accuracy, problems leading to the development of artificial 
data simulation via augmentation, generation or multi-modality 
gathering. Advancements continue to be made at a rapid pace 
to tackle these challenges.
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